Smart Fire Prevention Using Dahua Thermal Cameras to Detect Fire White Paper by Dahua Technology Release 1.2 # Contents | 1 | Introduction to Thermal Imaging | | | | | | |---|---------------------------------|-------------------------------------|---|--|--|--| | 2 | Detecti | ng Fires with Dahua Thermal Cameras | 3 | | | | | | 2.1 Mo | de Selection | 3 | | | | | | 2.1.1 | High Response Mode | 3 | | | | | | 2.1.2 | Anti-jamming Mode | 3 | | | | | 3 | Detection | on Range | 4 | | | | # 1 Introduction to Thermal Imaging Images recorded from traditional camera devices are generated by visible light reflecting off object surfaces. Since humans can only see wavelengths within the visible light spectrum, which range from $0.38^{\circ}0.78\mu m$ (Figure 1), traditional camera surveillance has generally been able to solve basic monitoring requirements. Figure 1: Electromagnetic spectrum wavelengths In contrast, thermal cameras are designed to detect radiation with wider wavelengths, which is called thermal or infrared radiation. All objects with a temperature above absolute zero, also known as 0 Kelvin (0 K or -273 °C or -459 °F), emit infrared radiation. This kind of radiation is not visible to human eyes, but can be visualized by using a special type of sensor technology called thermal imaging technology. The advancement of thermal imaging technology has opened up a number of possibilities for advanced surveillance objectives which traditional cameras cannot accomplish, such as equipment monitoring, border surveillance, and fire detection. The thermal camera imaging process is shown in Figure 2. It involves an infrared detector, optical lens, signal processing system, electronic components, protective shield, and other components. Figure 2: Thermal camera imaging process # 2 Detecting Fires with Dahua Thermal Cameras Thermal cameras can detect mild differences in temperature change, and automatically perform a temperature distribution of the captured video. This feature allows thermal camera to detect objects with a large temperature difference compared to the average temperature of the scene. As fires usually have much higher temperatures than the surrounding environment, Dahua thermal cameras are able to detect the presence of fire. #### 2.1 Mode Selection Built-in fire detection algorithms provide Dahua thermal camera with the ability to detect fire from long range. There are two automatic fire detection modes: anti-jamming mode and high response mode. ## 2.1.1 High Response Mode High response mode detects fire depending on the relative temperature difference between fire and the background. When the temperature of an object or area is several times higher than the average temperature of the current scene, the camera will trigger a fire alarm, and all objects which have reached or exceeded the temperature threshold will be detected and tagged as a suspected fire. Advantages: High sensitivity, can detect all high temperature objects, low missed alarm rate. Disadvantages: High false alarm rate, unable to distinguish between high temperature objects such as a boiler, and fire. This mode is recommended to be used in long range detection scenarios and in areas with low tolerance of missed alarms. ### 2.1.2 Anti-jamming Mode Based on high response mode, anti-jamming mode adds analysis and judgment of fire features, such as shape, size, fire burning characteristics, etc. It estimates whether there is a fire or not through multiple criteria, rather than merely temperature difference. Advantages: Moderate sensitivity, can distinguish between fire and common static objects with high temperatures. Disadvantages: When a target is far away from the thermal camera, it will lead to missed alarms if the size of fire is too small in the thermal view. For this reason, the fire size should reach a certain amount of pixels. Thus this mode is recommended in short or medium range detection in areas that require high fire alarm accuracy. # 3 Detection Range | Resolution | Lens(mm) | FOV (H x V) | Fire Size (H×W) | Effective
distance | Max.
distance | |------------|----------|--------------|-----------------|-----------------------|------------------| | 250-402 | 3.5mm | 50.6° x37.8° | 0.2m×0.2m | 9.7m | 19.4m | | 256x192 | 7mm | 24° x18° | 0.2m×0.2m | 19.4m | 38.9m | | | 7.5mm | 53.7° x39.7° | 2m×2m | 220m | 464m | | | 13mm | 30.0° x22.6° | 2m×2m | 390m | 805m | | | 25mm | 15.5° x11.6° | 2m×2m | 750m | 1548m | | 400x300 | 35mm | 11.1° x8.3° | 2m×2m | 1050m | 2167m | | | 50mm | 7.8° x5.8° | 2m×2m | 1500m | 3096m | | | 75mm | 5.2° x3.9° | 2m×2m | 2250m | 4644m | | | 100mm | 3.9° x2.9° | 2m×2m | 3000m | 6192m | | | 7.5mm | 91.2° x70.3° | 2m×2m | 220m | 464m | | | 13mm | 48.9° x38.8° | 2m×2m | 390m | 805m | | | 25mm | 24.6° x19.8° | 2m×2m | 750m | 1548m | | 640x512 | 35mm | 17.6° x14.1° | 2m×2m | 1050m | 2167m | | | 50mm | 12.4° x9.9° | 2m×2m | 1500m | 3096m | | | 75mm | 8.3° x6.6° | 2m×2m | 2250m | 4644m | | | 100mm | 6.2° x5.0° | 2m×2m | 3000m | 6192m | Table 1: Detection range for various lens configurations Note: This table is only for reference: actual performance may vary due to other factors, such as fire size, the temperature difference between the fire and the background, atmospheric transmission (air conditions), and the physical installation. As shown in Figure 3, Dahua thermal camera with 75mm lens can detect and tag fires from 2km and 5km away, the size of the fire is 1.2mx0.8m. Figure 3: Fire detection and alarm